Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 193
Filtrar
1.
BMC Genomics ; 25(1): 356, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600443

RESUMO

BACKGROUND: Centromeres play a crucial and conserved role in cell division, although their composition and evolutionary history in green algae, the evolutionary ancestors of land plants, remains largely unknown. RESULTS: We constructed near telomere-to-telomere (T2T) assemblies for two Trebouxiophyceae species, Chlorella sorokiniana NS4-2 and Chlorella pyrenoidosa DBH, with chromosome numbers of 12 and 13, and genome sizes of 58.11 Mb and 53.41 Mb, respectively. We identified and validated their centromere sequences using CENH3 ChIP-seq and found that, similar to humans and higher plants, the centromeric CENH3 signals of green algae display a pattern of hypomethylation. Interestingly, the centromeres of both species largely comprised transposable elements, although they differed significantly in their composition. Species within the Chlorella genus display a more diverse centromere composition, with major constituents including members of the LTR/Copia, LINE/L1, and LINE/RTEX families. This is in contrast to green algae including Chlamydomonas reinhardtii, Coccomyxa subellipsoidea, and Chromochloris zofingiensis, in which centromere composition instead has a pronounced single-element composition. Moreover, we observed significant differences in the composition and structure of centromeres among chromosomes with strong collinearity within the Chlorella genus, suggesting that centromeric sequence evolves more rapidly than sequence in non-centromeric regions. CONCLUSIONS: This study not only provides high-quality genome data for comparative genomics of green algae but gives insight into the composition and evolutionary history of centromeres in early plants, laying an important foundation for further research on their evolution.


Assuntos
Chlorella , Humanos , Chlorella/genética , Centrômero/genética , Plantas/genética , Elementos de DNA Transponíveis , Telômero/genética
2.
AMB Express ; 14(1): 39, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647736

RESUMO

Interactions between microorganisms and plants can stimulate plant growth and promote nitrogen cycling. Nitrogen fertilizers are routinely used in agriculture to improve crop growth and yield; however, poor use efficiency impairs the optimal utilization of such fertilizers. Differences in the microbial diversity and plant growth of rice soil under different nitrogen application conditions and the expression of nitrogen-use efficiency-related genes have not been previously investigated. Therefore, this study investigates how nitrogen application and nitrogen-use efficiency-related gene NRT1.1B expression affect the soil microbial diversity and growth indices of two rice varieties, Huaidao 5 and Xinhuai 5. In total, 103,463 and 98,427 operational taxonomic units were detected in the soils of the Huaidao 5 and Xinhuai 5 rice varieties, respectively. The Shannon and Simpson indices initially increased and then decreased, whereas the Chao and abundance-based coverage estimator indices decreased after the application of nitrogen fertilizer. Nitrogen fertilization also reduced soil bacterial diversity and richness, as indicated by the reduced abundances of Azotobacter recorded in the soils of both rice varieties. Nitrogen application initially increased and then decreased the grain number per panicle, yield per plant, root, stem, and leaf nitrogen, total nitrogen content, glutamine synthetase, nitrate reductase, urease, and root activities of both varieties. Plant height showed positive linear trends in response to nitrogen application, whereas thousand-grain weights showed a negative trend. Our findings may be used to optimize nitrogen fertilizer use for rice cultivation and develop crop-variety-specific strategies for nitrogen fertilizer application.

3.
Water Res ; 256: 121592, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38626614

RESUMO

The cost-effective and environment-friendly sulfur-driven autotrophic denitrification (SdAD) process has drawn significant attention for advanced nitrogen removal from low carbon-to-nitrogen (C/N) ratio wastewater in recent years. However, achieving efficient nitrogen removal and maintaining system stability of SdAD process in treating low C/N landfill leachate treatment have been a major challenge. In this study, a novel electrochemical-coupled sulfur-driven autotrophic denitrification (ESdAD) system was developed and compared with SdAD system through a long-term continuous study. Superior nitrogen removal performance (removal efficiency of 89.1 ± 2.5 %) was achieved in ESdAD system compared to SdAD process when treating raw landfill leachate (influent total nitrogen (TN) concentration of 241.7 ± 36.3 mg-N/L), and the effluent TN concentration of ESdAD bioreactor was as low as 24.8 ± 5.1 mg-N/L, which meets the discharge standard of China (< 40 mg N/L). Moreover, less sulfate production rate (1.3 ± 0.2 mg SO42--S/mgNOx--N vs 1.7 ± 0.2 mg SO42--S/mgNOx--N) and excellent pH modulation (pH of 6.9 ± 0.2 vs 5.8 ± 0.4) were also achieved in the ESdAD system compared to SdAD system. The improvement of ESdAD system performance was contributed to coexistence and interaction of heterotrophic bacteria (e.g., Rhodanobacter, Thermomonas, etc.), sulfur autotrophic bacteria (e.g., Thiobacillus, Sulfurimonas, Ignavibacterium etc.) and hydrogen autotrophic bacteria (e.g., Thauera, Comamonas, etc.) under current stimulation. In addition, microbial nitrogen metabolic activity, including functional enzyme (e.g., Nar and Nir) activities and electron transfer capacity of extracellular polymeric substances (EPS) and cytochrome c (Cyt-C), were also enhanced during current stimulation, which facilitated the nitrogen removal and maintained system stability. These findings suggested that ESdAD is an effective and eco-friendly process for advanced nitrogen removal for low C/N wastewater.

4.
Environ Sci Technol ; 58(11): 5024-5034, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38454313

RESUMO

Detecting cyanobacteria in environments is an important concern due to their crucial roles in ecosystems, and they can form blooms with the potential to harm humans and nonhuman entities. However, the most widely used methods for high-throughput detection of environmental cyanobacteria, such as 16S rRNA sequencing, typically provide above-species-level resolution, thereby disregarding intraspecific variation. To address this, we developed a novel DNA microarray tool, termed the CyanoStrainChip, that enables strain-level comprehensive profiling of environmental cyanobacteria. The CyanoStrainChip was designed to target 1277 strains; nearly all major groups of cyanobacteria are included by implementing 43,666 genome-wide, strain-specific probes. It demonstrated strong specificity by in vitro mock community experiments. The high correlation (Pearson's R > 0.97) between probe fluorescence intensities and the corresponding DNA amounts (ranging from 1-100 ng) indicated excellent quantitative capability. Consistent cyanobacterial profiles of field samples were observed by both the CyanoStrainChip and next-generation sequencing methods. Furthermore, CyanoStrainChip analysis of surface water samples in Lake Chaohu uncovered a high intraspecific variation of abundance change within the genus Microcystis between different severity levels of cyanobacterial blooms, highlighting two toxic Microcystis strains that are of critical concern for Lake Chaohu harmful blooms suppression. Overall, these results suggest a potential for CyanoStrainChip as a valuable tool for cyanobacterial ecological research and harmful bloom monitoring to supplement existing techniques.


Assuntos
Cianobactérias , Microcystis , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , RNA Ribossômico 16S/genética , Ecossistema , Proliferação Nociva de Algas , Cianobactérias/genética , Lagos/microbiologia , Microcystis/genética
5.
Foods ; 13(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38397507

RESUMO

Zearalenone (ZEN) is considered one of the most serious mycotoxins contaminating grains and their by-products, causing significant economic losses in the feed and food industries. Biodegradation pathways are currently considered the most efficient solution to remove ZEN contamination from foods. However, low degradation rates and vulnerability to environmental impacts limit the application of biodegradation pathways. Therefore, the main research objective of this article was to screen strains that can efficiently degrade ZEN and survive under harsh conditions. This study successfully isolated a new strain L9 which can efficiently degrade ZEN from 108 food ingredients. The results of sequence alignment showed that L9 is Bacillus velezensis. Meanwhile, we found that the L9 degradation rate reached 91.14% at 24 h and confirmed that the primary degradation mechanism of this strain is biodegradation. The strain exhibits resistance to high temperature, acid, and 0.3% bile salts. The results of whole-genome sequencing analysis showed that, it is possible that the strain encodes the key enzyme, such as chitinase, carboxylesterases, and lactone hydrolase, that work together to degrade ZEN. In addition, 227 unique genes in this strain are primarily involved in its replication, recombination, repair, and protective mechanisms. In summary, we successfully excavated a ZEN-degrading, genetically distinct strain of Bacillus velezensis that provides a solid foundation for the detoxification of feed and food contamination in the natural environment.

6.
Bioresour Technol ; 396: 130421, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38320713

RESUMO

Large quantities of greenhouse gases (GHGs) are emitted into the atmosphere during wastewater treatment. In this study, GHG and microbial samples were collected from four wastewater treatment plants (WWTPs), and their differences and relationships were assessed. The study showed that, compared with conventionally constructed WWTPs, well-established gas collection systems in underground WWTPs facilitate comprehensive collection and accurate accounting of GHGs. In aboveground WWTPs, capped anoxic ponds promote methane production releasing it at 2-8 times the rate of uncapped emissions, in contrast to nitrous oxide emissions. Moreover, a stable subsurface environment allows for smaller fluctuations in daily GHG emissions and higher microbial diversity and abundance. This study highlights differences in GHG emission fluxes and microbial communities in differently constructed WWTPs, which are useful for control and accurate accounting of GHG emissions.


Assuntos
Gases de Efeito Estufa , Microbiota , Purificação da Água , Gases de Efeito Estufa/análise , Águas Residuárias , Metano/análise
7.
Water Res ; 252: 121226, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38309071

RESUMO

The extensive exploration of antibiotic biodegradation by antibiotic-degrading bacteria in biological wastewater treatment processes has left a notable gap in understanding the behavior of these bacteria when exposed to antibiotics and the initiation of biodegradation processes. This study, therefore, delves into the adhesive behavior of Paraclostridium bifermentans, isolated from a bioreactor treating ciprofloxacin-laden wastewater, towards ciprofloxacin molecules. For the first time, this behavior is observed and characterized through quartz crystal microbalance with dissipation (QCM-D) and atomic force microscopy. The investigation further extends to identify key regulatory factors and mechanisms governing this adhesive behavior through a comparative proteomics analysis. The results reveal the dominance of extracellular proteins, particularly those involved in nucleotide binding, hydrolase, and transferase, in the adhesion process. These proteins play pivotal roles through direct chemical binding and the regulation of signaling molecule. Furthermore, QCM-D measurements provide evidence that transferase-related signaling molecules, especially tyrosine, augment the binding between ciprofloxacin and transferases, resulting in enhance ciprofloxacin removal by P. bifermentans (increased by ∼1.2-fold). This suggests a role for transferase-related signaling molecules in manipulating the adhesive behavior of P. bifermentans towards ciprofloxacin. These findings contribute to a new understanding of the prerequisites for antibiotic biodegradation and offer potential strategies for improving the application of antibiotic-degrading bacteria in the treatment of antibiotics-laden wastewater.


Assuntos
Antibacterianos , Ciprofloxacina , Antibacterianos/metabolismo , Ciprofloxacina/metabolismo , Águas Residuárias , Biodegradação Ambiental , Bactérias/metabolismo , Proteínas , Transferases/metabolismo
8.
J Hazard Mater ; 465: 133394, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38211522

RESUMO

Discarded cefradine pellets (DCP) as the hazardous wastes contain lots of bioavailable sucrose. Anaerobic digestion (AD) may be a promising technology for treating DCP, achieving dual goals of waste treatment and resource recovery. However, high concentration of cefradine will inhibit the AD process. This study applied thermo-alkaline pretreatment (TAP) to remove cefradine and improve the AD performance of DCP. Around 95% cefradine could be degraded to different intermediate degradation products (TPs) in TAP at optimal condition, and hydrolysis and hydrogenation were the main degradation pathways. Quantitative structure-activity relationship analysis indicated that the main TPs exhibited lower toxicity than cefradine, and DCP residues after TAP were almost not toxic to E. coli K12 and B. subtilis growth by antibacterial activity analysis. Therefore, TAP promoted the biomethane yield in AD of DCP residues (274.74 mL/g COD), which was 1.91 times that of control group. Besides, compared to control group, final cefradine concentrations in liquids and sludge were significantly decreased in AD system with TAP, lowering environmental risk and indicating stronger prospect for process application. Microbiological analysis revealed that acidogens (Macellibacteroides, Bacteroides), syntrophs (Syntrophobacter, Syntrophorhabdus), and acetoclastic Methanosaeta were enriched in AD system with TAP, which contributed to improving AD performance of DCP.


Assuntos
Antibacterianos , Cefradina , Anaerobiose , Escherichia coli/metabolismo , Eliminação de Resíduos Líquidos/métodos , Esgotos/química , Metano/metabolismo , Reatores Biológicos
9.
Artigo em Inglês | MEDLINE | ID: mdl-37171004

RESUMO

It is well known that skin lesions are among the most common complications of chronic kidney disease (CKD), which significantly impact the patient's quality of life. Research has demonstrated that gut and skin lesions are closely interconnected and affect each other. This interaction is referred to as the "gut-skin axis" and the intestinal microbiota plays a critical role in this interaction. Changes in gut microbiota composition and function are associated with the development of skin diseases, which are part of the "gut-skin axis". Presently, preliminary results have been demonstrated in basic and clinical research on CKD skin lesions. With further research, the "gut-skin axis" theory can provide new ideas for treating CKD skin lesions and may become a potential treatment target.


Assuntos
Microbioma Gastrointestinal , Insuficiência Renal Crônica , Dermatopatias , Humanos , Qualidade de Vida , Insuficiência Renal Crônica/tratamento farmacológico , Rim
11.
Bioresour Technol ; 394: 130239, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38142907

RESUMO

This study investigated the potential of micro-nano bubble (MNB) ozonation pretreatment to eliminate oxytetracycline (OTC) from wastewater and improve subsequent anaerobic digestion (AD) performance. The findings revealed that MNB ozonation achieved efficient OTC oxidation (>99 % in 60 min), and significantly enhanced methane production by 51 % compared to conventional ozonation (under 30 min of pretreatment). Additionally, MNB ozonation resulted in a decrease in the soluble chemical oxygen demand and reduced volatile fatty acid accumulation compared to conventional ozonation. Furthermore, the study sheds light on the profound impact of OTC and its oxidation by-products on the sludge microbiome. Exposure to OTC and its oxidation by-products resulted in alterations in extracellular polymeric substances composition and led to significant shifts in microbial community structure. This study highlights the promise of MNB ozonation as an effective approach for pharmaceutical pollutant removal and the optimization of AD performance in wastewater treatment, with implications for improved environmental sustainability.


Assuntos
Oxitetraciclina , Ozônio , Águas Residuárias , Anaerobiose , Eliminação de Resíduos Líquidos/métodos , Esgotos/química , Ozônio/química , Metano , Reatores Biológicos
12.
Membranes (Basel) ; 13(10)2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37887995

RESUMO

Landfill leachate from some sites contains a high concentration of Mn2+, which may cause reverse osmosis (RO) membrane fouling during RO treatment. In this study, the effect of Mn2+ on RO membrane fouling caused by typical organic pollutants (humic acid (HA), protein (BSA), and sodium alginate (SA)) was systematically investigated, and it was found that Mn2+ exacerbates RO membrane fouling caused by HA, SA, and HBS (mixture of HA + BSA + SA). When the Mn2+ concentration was 0.5 mM and 0.05 mM separately, the membrane fouling caused by HA and SA began to become significant. On the other hand, with for HBS fouling only, the water flux decreased significantly by about 21.7% and further decreased with an increasing Mn2+ concentration. However, Mn2+ has no direct effect on BSA. The effect degrees to which Mn2+ affected RO membrane fouling can be expressed as follows: HBS > SA > HA > BSA. The density functional theory (DFT) calculations also gave the same results. In modeling the reaction of the complexation of Mn2+ with the carboxyl group in these four types of organic matter, BSA has the highest energy (-55.7 kJ/mol), which predicts that BSA binding to Mn2+ is the most unstable compared to other organic matter. The BSA carboxylate group also has the largest bond length (2.538-2.574 Å) with Mn2+ and the weakest interaction force, which provides a theoretical basis for controlling RO membrane fouling exacerbated by Mn2+.

13.
Membranes (Basel) ; 13(10)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37888009

RESUMO

Membrane fouling is a non-negligible issue affecting the performance of membrane systems. Particularly, organic fouling is the most persistent and severe form of fouling. The complexation between inorganic and organic matter may exacerbate membrane organic fouling. This mini review systematically analyzes the role of inorganic matter in membrane organic fouling. Inorganic substances, such as metal ions and silica, can interact with organic foulants like humic acids, polysaccharides, and proteins through ionic bonding, hydrogen bonding, coordination, and van der Waals interactions. These interactions facilitate the formation of larger aggregates that exacerbate fouling, especially for reverse osmosis membranes. Molecular simulations using molecular dynamics (MD) and density functional theory (DFT) provide valuable mechanistic insights complementing fouling experiments. Polysaccharide fouling is mainly governed by transparent exopolymer particle (TEP) formations induced by inorganic ion bridging. Inorganic coagulants like aluminum and iron salts mitigate fouling for ultrafiltration but not reverse osmosis membranes. This review summarizes the effects of critical inorganic constituents on fouling by major organic foulants, providing an important reference for membrane fouling modeling and fouling control strategies.

14.
Front Pharmacol ; 14: 1234181, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37808187

RESUMO

Introduction: The immune-related lncRNAs (IRLs) are critical for the development of cervical cancer (CC), but it is still unclear how exactly ILRs contribute to CC. In this study, we aimed to examine the relationship between IRL and CC in detail. Methods: First, the RNAseq data and clinical data of CC patients were collected from The Cancer Genome Atlas (TCGA) database, along with the immune genes from the Import database. We used univariate cox and least absolute shrinkage and selection operator (lasso) to obtain IRLs for prediction after screening the variables. According to the expression levels and risk coefficients of IRLs, the riskscore were calculated. We analyzed the relationship between the model and oxidative stress. We stratified the risk model into two as the high and low-risk groups. We also evaluated the survival differences, immune cell differences, immunotherapeutic response differences, and drug sensitivity differences between the risk groups. Finally, the genes in the model were experimentally validated. Results: Based on the above analyses, we further selected four IRLs (TFAP2A.AS1, AP000911.1, AL133215.2, and LINC02078) to construct the risk model. The model was associated with oxidative-stress-related genes, especially SOD2 and OGG1. Patients in the high-risk group had a lower overall survival than those in the low-risk group. Riskscore was positively correlated with resting mast cells, neutrophils, and CD8+ T-cells. Patients in the low-risk group showed a greater sensitivity to immunosuppression therapy. In addition, we found that patients with the PIK3CA mutation were more sensitive to chemotherapeutic agents such as dasatinib, afatinib, dinaciclib and pelitinib. The function of AL133215.2 was verified, which was consistent with previous findings, and AL133215.2 exerted a pro-tumorigenic effect. We also found that AL133215.2 was closely associated with oxidative-stress-related pathways. Discussion: The results suggested that risk modeling might be useful for prognosticating patients with CC and opening up new routes for immunotherapy.

15.
Biology (Basel) ; 12(9)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37759594

RESUMO

As a class I carcinogen, aflatoxin can cause serious damage to various tissues and organs through oxidative stress injuries. The liver, as the target organ of AFB1, is the most seriously damaged. Biological methods are commonly used to degrade AFB1. In our study, the aflatoxin B1-degrading strain ZJ20 was screened from AFB1-contaminated feed and soil, and the degradation of AFB1 by ZJ20 was investigated. The whole genome of strain ZJ20 was analyzed, revealing the genomic complexity of strain ZJ20. The 16S rRNA analysis of strain ZJ20 showed 100% identity to Bacillus subtilis IAM 12118. Through whole gene functional annotation, it was determined that ZJ20 has high antioxidant activity and enzymatic activity; more than 100 CAZymes and 11 gene clusters are involved in the production of secondary metabolites with antimicrobial properties. In addition, B. subtilis ZJ20 was predicted to contain a cluster of genes encoding AFB1-degrading enzymes, including chitinase, laccase, lactonase, and manganese oxidase. The comprehensive analysis of B. subtilis provides a theoretical basis for the subsequent development of the biological functions of ZJ20 and the combinatorial enzyme degradation of AFB1.

16.
Environ Sci Technol ; 57(37): 14002-14014, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37667590

RESUMO

The spatiotemporal bioaccumulation, trophic transfer of antibiotics, and regulation of the phytoplankton biological pump were quantitatively evaluated in the Pearl River, South China. The occurrence of antibiotics in organisms indicated a significant spatiotemporal trend associated with the life cycle of phytoplankton. Higher temporal bioaccumulation factors (BAFs) were found in phytoplankton at the bloom site, while lower BAFs of antibiotics in organisms could not be explained by phytoplankton biomass dilution but were attributed to the low bioavailability of antibiotics, which was highly associated with distribution coefficients (R2 = 0.480-0.595, p < 0.05). Such lower BAFs of antibiotics in phytoplankton at higher biomass sites hampered the entry of antibiotics into food webs, and trophic dilutions were subsequently observed for antibiotics except for ciprofloxacin (CFX) and sulfamerazine (SMZ) at sites with blooms in all seasons. Distribution of CFX, norfloxacin (NFX), and sulfapyridine (SPD) showed further significant positive relationships with the plasma protein fraction (R2 = 0.275-0.216, p < 0.05). Both mean BAFs and trophic magnification factors (TMFs) were significantly negatively correlated with phytoplankton biomass (R2 = 0.661-0.741, p < 0.05). This study highlights the importance of the biological pump in the regulation of spatiotemporal variations in bioaccumulation and trophic transfer of antibiotics in anthropogenic-impacted eutrophic rivers in subtropical regions.


Assuntos
Antibacterianos , Rios , Bioacumulação , Ciprofloxacina , Proteínas de Membrana Transportadoras , Fitoplâncton
17.
Microbiol Spectr ; : e0119323, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37750697

RESUMO

Avipoxviruses are considered as significant viral pathogen infecting a wide range of domestic and wild bird species globally, yet the majority of avipoxviruses that infect the wild bird species remain uncharacterized and their genetic diversities remain unclear. In this study, we present a novel pathogenic avipoxvirus isolated from the cutaneous pox lesions of a wild oriental turtle dove (Streptopelia orientalis), tentatively named as turtle dovepox virus (TDPV). The avipoxvirus was isolated by using the chorioallantoic membranes of specific pathogen-free chicken embryos which showed characteristic focal pock lesions, followed by cytopathic effects in host cells infected with oriental turtle dovepox virus. An effort in sequencing the whole genome of the poxvirus using next-generation sequencing was given, and the first whole genome sequence of TDPV was obtained. The TDPV genome was 281,386 bp in length and contained 380 predicted open reading frames (ORFs). While 336 of the predicted ORFs showed homology to other characterized avipoxviruses, the other 44 ORFs were unique. Subsequent phylogenetic analyses showed that the novel TDPV shared the closest genetic evolutionary linkage with the avipoxviruses isolated from pigeon in South Africa and India, of which the TDPV genome had the highest sequence similarity (92.5%) with South African pigeonpox virus (FeP2). In conclusion, the sequenced TDPV is significantly different from any other avipoxviruses isolated from avian or other natural host species considering genomic architecture and observed sequence similarity index. Thus, it likely should be considered a separate species. IMPORTANCE Over the past few decades, avipoxviruses have been found in a number of wild bird species including the oriental turtle dove. However, there is no whole genome sequence information on avipoxviruses isolated from oriental turtle dove, leaving us unclear about the evolutionary linkage of avipoxviruses in oriental turtle dove and other wild bird species. Thus, we believe that our study makes a significant contribution because it is the first report of the whole genome sequence of TDPV isolated from a wild oriental turtle dove, which enriches the genomic information of the genus Avipoxvirus, furthermore, contributes to tracking the genetic evolution of avipoxviruses-infected oriental turtle dove species.

18.
RSC Adv ; 13(35): 24460-24465, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37588978

RESUMO

A series of chiral bifunctional organocatalysts were prepared and used for enantioselective synthesis of 3-substituted isoindolinones from 2-formylarylnitriles and malonates through aldol-cyclization rearrangement tandem reaction in excellent yields and enantioselectivites (up to 87% yield and 95% ee) without recrystallization. In this investigation, we found that chiral tertiary-amine catalysts with a urea group can afford 3-substituted isoindolinones both in higher yields (87% vs. 77%) and enantioselectivities (95% ee vs. 46% ee) than chiral bifunctional phase-transfer catalysts.

19.
Front Vet Sci ; 10: 1178801, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37303720

RESUMO

The reverse genetics system of the Newcastle disease virus (NDV) has provided investigators with a powerful approach to understand viral molecular biology and vaccine development. It has been impressively improved with modified strategies since its first report, but it still poses some challenges. Most noteworthy, the genome complexity and length made full-length error-free cDNA assembly the most challenging and time-consuming step of NDV rescue. In the present study, we report a rapid full-length NDV genome construction with only a two-step ligation-independent cloning (LIC) strategy, which could be applied to distinct genotypes. In this approach, the genome of NDV was divided into two segments, and the cDNA clones were generated by RT-PCR followed by LIC. Subsequently, the infectious NDVs were rescued by co-transfection of the full-length cDNA clones and supporting plasmids expressing the NP, P, and L proteins of NDV in BHK-21 cells. Compared with the conventional cloning approaches, the two-step cloning method drastically reduced the number of cloning steps and saved researchers a substantial amount of time for constructing NDV infectious clones, thus enabling a rapid rescue of different genotypes of NDVs in a matter of weeks. Therefore, this two-step LIC cloning strategy may have an application to the rapid development of NDV-vectored vaccines against emerging animal diseases and the generation of different genotypes of recombinant NDVs for cancer therapy.

20.
ACS Appl Mater Interfaces ; 15(26): 31584-31594, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37339248

RESUMO

Metal-oxide interfaces on Cu-based catalysts play very important roles in the low-temperature water-gas shift reaction (LT-WGSR). However, developing catalysts with abundant, active, and robust Cu-metal oxide interfaces under LT-WGSR conditions remains challenging. Herein, we report the successful development of an inverse copper-ceria catalyst (Cu@CeO2), which exhibited very high efficiency for the LT-WGSR. At a reaction temperature of 250 °C, the LT-WGSR activity of the Cu@CeO2 catalyst was about three times higher than that of a pristine Cu catalyst without CeO2. Comprehensive quasi-in situ structural characterizations indicated that the Cu@CeO2 catalyst was rich in CeO2/Cu2O/Cu tandem interfaces. Reaction kinetics studies and density functional theory (DFT) calculations revealed that the Cu+/Cu0 interfaces were the active sites for the LT-WGSR, while adjacent CeO2 nanoparticles play a key role in activating H2O and stabilizing the Cu+/Cu0 interfaces. Our study highlights the role of the CeO2/Cu2O/Cu tandem interface in regulating catalyst activity and stability, thus contributing to the development of improved Cu-based catalysts for the LT-WGSR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...